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Overview

Timeline Partners
= Project start date: Oct. 2010 = Active material process R&D:
= Project end date: Sept. 2017 — Argonne’s Applied R&D Group
» Percent complete: on going e Material synthesis and scale-up
— University of lllinois at Chicago
Budget e 3D elemental mapping
= Total project funding:
ota plozjec’.c ) 1d 8 — Technische Universitat Braunschweig
- SL2MinFY16 e Particle stress study
— S$1.1IMin FY17
— Brookhaven National Laboratory, EES,
. Dr. Xiao-Qing Yang’s group
Barriers

e Thermal stability
= Cost: Reduce manufacturing costs with

. . — Laminar
advanced, continuous processing methods

L. . e Taylor Vortex Reactor process
= Performance: Optimization of particle scale-up

structure and composition combination for
maximum gradient material performance
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Objectives - Relevance

The objective of this program is to carry out a systematic research to:

— Synthesize and evaluate various types of concentrated gradient cathode materials
targeting > 220 mAh/g with > 95% capacity retention after 100 cycles.

Develop cost-effective batch and continuous processes for the scale-up of concentrated
gradient cathode materials.

— Provide sufficient quantities of these materials produced under rigorous quality control
specifications for industrial evaluation of further research.

= The relevance of this program to the DOE Vehicle Technologies Program is:
— The program is a key missing link between discovery of advanced battery materials,
market evaluation of these materials and high-volume manufacturing.
e Reducing the risk associated with the commercialization of new battery materials.
— This program provides large quantities of materials with consistent quality.
e Forindustrial validation in large format prototype cells.
e For further research on concentrated gradient cathode materials.
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Milestones

FY16

FY17

Vaterial.

Material.

Vaterial

Process
Material
Viaterial.

Viaterial.

Viaterial.
Viaterial

Process:

Characterize preliminary 622 Gradient material
Deliver preliminary 622 Gradient material to BNL

— X-ray absorption spectroscopy

- Thermal stability studies
Design high-capacity concentrated gradient materials
- 811 Gradient material (LiNig ggMng 95C0g 950, COre + LiNig 33Mng 33C0 330, surface)
- 8 um particle structure design (Core-Gradient & Core-Shell)
Set up 20L batch reactor system for material synthesis
Synthesize preliminary 811 Core-Gradient material
Synthesize preliminary 811 Core-Shell material
Characterize two prepared gradient materials
- Cross-sectional mapping (SEM with EDS)
- Electrochemical test and comparison
- Thermal stability studies
Kg production of 811 Core-Shell and Core-Gradient materials
Design other types of concentrated gradient materials such as FCG* and TSFCG**

Investigate an advanced continuous synthesis process using 10L TVR***

* Full Concentration-Gradient ** Two Slope Full Concentration-Gradient *** Taylor Vortex Reactor

Completed

Completed

Completed

Completed

Completed
Completed

Completed

Completed

Planned
Planned
Planned

Planned
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Approach - Strategy

Material Synthesis and Evaluation

(] Define target active material .
— Concentrated gradient cathode materials targeting concentrated gradlent

> 220 mAh/g with > 95% capacity retention after 100 cycles cathode materials

[ Select synthesis process and synthesis route
— Current: Batch process with hydroxide route
— Future: Advanced continuous TVR process

J Produce preliminary materials

— Gram scale preliminary synthesis of various
types of concentrated gradient materials

— Performance check for Go/No-Go decision

O Investigate particle structure

and composition combination e
(J Production and distribution
— 1~ 10 kilogram scale production 200'g/haten 2 kg/batch ZO0E/HIE 200 g/hr 100 g/hr

— Characterization & pouch cell evaluation
— Material support to assist other DOE programs

Process R&D for Scale-up

Current batch R&D for advanced
synthesis method Continuous synthesis method

L Current 40L batch process
L Future continuous process

Argonne & 5
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Gradient Material Strategy

] Gradient material will have the best of Core and Surface compositions

I Core composition - Ni-rich material : high capacity, low stability
I 1 Gradient layer - Gradient layer : prevents the crack and segregation between Core and Shell
B surface composition - Mn-rich material : low capacity, high stability

[GEN 1] Core-Shell [GEN 2] Core-Gradient (FY16) [GEN 3] Full [GEN 4] Two Slope Full
Concentration-Gradient Concentration-Gradient
Core Surface
NMC811 NMC442

Ni Ni Ni T ! i
Concentration of T = Mn Mn Mn > Mn
transition metal Co Co Co ﬁ - Co

High capacity Medium capacity Low capacity Medium capacity
Low particle strength Medium particle strength High particle strength High particle strength
Low stability Medium stability High stability High stability

Research target o Higher capacity - increase Ni portion

9 Higher particle strength — particle structure optimization
e Higher stability — composition optimization
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Technical Accomplishments

Gradient Material Synthesis Process

) Batch reactor system was used for gradient material synthesis el a L1 0 eldelelte o))

_‘ o DI Water
Base
;Z'"o * First, Core TM solution feeding to batch reactor
) 0 Then, Surface TM solution feeding to Core TM solution tank
TM Soln TM Soln
(Surface) ’ (Core)
=0 w == )

v Core TM solution changes to Surface TM solution gradually
Water

¥ Discharge
Bath Valve
T =

(J Continuous production of gradient material is being investigated
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v Surface TM solution is injected to the middle point of TVR
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622 Gradient Material (FY16)

J Synthesis of 622 Gradient materials J Elemental mappings
Core Surface Core-Gradient 1 Core-Gradient 2

NMC811 NMC442 (thin layer) (thick layer)

/

® Core-Gradient material was

prepared and compared to a
commercial NMC622 cathode.

Ni
Thickness control of Gradient layer ylon

gl 3.0-4.4V,30°C| '

.0 - V. o 2 cell averages with
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«0m Core-Gradient 1
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Capacity, mAh/g
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Active material : carbon : PVDF = 90:5:5
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Technical Accomplishments

; : L BROOKHFIVEN
622 Gradient Material Characterization NATIONAL LABORATORY

J X-ray absorption spectroscopy on commercial NMC622 and 622 Gradient materials
(BNL, EES, Dr. Xiao-Qing Yang’s group)

T T T T T T T T T T
Ni K CoK Mn K

Commercial NMC622
‘——— 622 Gradient

Commercial NMC622
—— 622 Gradient

Commercial NMC622
—— 622 Gradient

Normalized intensity (arb.unit)
Normalized intensity (arb.unit)
Normalized intensity (arb.unit)

L Il Il I L 1 L L
8330 8340 8350 8360 7710 7720 7730 6540 6550 6560

Energy (eV) Energy (eV) Energy (eV)

Ni K

Commercial NMC622 CoK Commercial NMC622 Mn K Commercial NMC622
—— 622 Gradient —— 622 Gradient —— 622 Gradient

FT magnitude (arb.unit)
FT magnitude (arb.unit)
FT magnitude (arb.unit)

" 1 " 1 " 1 " 1 I 1 1 1 1 1
0 1 2 3 4 5 6 0 1 2 3 4
Radial distance (A)

.
5 6 0 1 2 3 4 5 6
Radial distance (A) Radial distance (A)

v The Ni, Co and Mn K-edge XANES data are almost identical, which indicates that the average oxidation states of Ni,
Co and Mn in commercial NMC622 and 622 Gradient cathodes are same.

v The local structure of Ni and Co are same. But Mn-M (M=Ni, Co, Mn) correlation at ~2.5 A shows a difference. The
local structural analysis near surface by using soft X-ray and TEM will be conducted.
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Technical Accomplisrmments . . . BHOOKHM“E“
622 Gradient Material Characterization NATIONAL LABORATORY

J Thermal stability studies on the charged 622 Gradient using time resolved XRD
(BNL, EES, Dr. Xiao-Qing Yang’s group)

Commercial NMC622, 4.3V 622 Gradient, 4.3V
500 T ] ] — T u 500
A1
. - 0 -
Disordered 40 4
spinel 400 § 400 g
(Fd-3m) o 350 1 350 §
oq_)“ 300 ¢ 300 @
3
E 250 250 @
S
c 200 200 §
ﬁ 150 § 150 §
Layered
(R-3m) 100 8 100 3
50 50 g
17 18 19 20 30 31 32 63 64 65 66 67 17 18 19 20 30 31 32 63 64 65 66 67

2 theta (degree) 2 theta (degree)

v The first phase transition from layered to spinel started at 175°C for commercial NMC622 while 622 Gradient shows
the phase transition from at about 200°C.

v Peak broadening at charged state for 622 Gradient indicates the structural inhomogeneity characteristic.
v The gas analyze will be conducted to investigate the difference in (003) peak shift behavior.
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Technical Accomplishments

811 Gradient Material Synthesis

[ To achieve higher-capacity gradient material with better cycle life

o Core composition — LiNigy ggMng g5C0q o505 for higher capacity

e Surface composition — LiNig 33Mng 33C0q 330, for better stability
9 Overall composition — LiNig ggMng 19C0( 100>

(] Particle structure design for 811 Gradient materials

622 Gradient (FY16)

811 Core-Gradient 811 Core-Shell
Core Surface Core Surface Core Surface
NMC811 NMC442 NMC9O55 NMC333 NMC955 NMC333

>

. Ni ¥ Ni
Concentration of

Mn

Mn Mn
Co 1 Co

transition metal

Medium capacity

Medium particle strength
Medium stability

High capacity
Medium particle strength
Improved stability

High capacity
Low particle strength
Improved stability
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Technical Accomplishments

811 Gradient Material Synthesis

J SEM with EDS on synthesized 811 Gradient materials
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Technical Accomplishments

Commercial NMC and 811 Gradient Materials

(J Comparison of 811 Gradient material prepared using batch reactor

Material

NMC 811

NMC 333

811 Core-Gradient

811 Core-Shell

Scale / status

s

Commercial product

Py

Fo % = o

MERF pre-pilot preliminary product

SEM
Composition NMC 811 NMC 333 ~NMC 811 ~NMC 811
ICP-MS analysis Li; 04Nig 8oMnNg 10C04 100y | Liz.07Nig.34MnNg33C04 330, | Lij goNig 76MnNg12€04 1,0, | Liz ooNig 76MnNg 12C04 1,0,
Particle size D¢, [um] 13.7 11.7 8.0 8.0
BET [m%/g] 0.37 0.34 0.55 0.57
* FCE [%] 90.0 90.5 88.1 86.7
* Avg. working voltage 3.86 3.88 3.87 3.87
* Discharge capacity
210.0 171.6 209.1 205.4
@ 5 cycle [mAh/g]

* At C/10,2.7-4.4Vand 30°C

v Gradient materials show reasonable physical electrochemical properties compared to a commercial NMC811.
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Technical Accomplishments

30°C Voltage Profile and C/10 Cycling
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Technical Accomplishments

30°C C/2 Cycling and Rate Performance
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Technical Accomplishments

55°C Voltage Profile and C/10 Cycling
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v Both Core-Gradient and Core-Shell show high initial
discharge capacity of 220 mAh/qg at C/10 and 55°C.

v Gradient materials show similar capacity retention
compared to commercial NMC811 at C/10 and 55°C.
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Technical Accomplishments

55°C C/2 Cycling and Rate Performance
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Technical Accomplishments

Radar Map Comparison and Conclusion
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v 811 Core-gradient material shows 20% improved
capacity retention compared to a commercial NMC811.
811 Core-Shell material shows better rate capability.

‘/To further improve cycle life of NMC gradient materials,

other additional approaches are necessary such as surface
coating.
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Technical Accomplishments

Long-term Research Plan for Gradient Materials

) Investigate various particle structures and composition combinations

" Particle strength analysis
" 3D elemental mapping
® Thermal stability

[GEN 1] Core-Shell [GEN 2] Core-Gradient [GEN 3] Full [GEN 4] Two Slope Full

. . . . Concentration-Gradient Concentration-Gradient
High-capacity High-stability
core composition - surface composition

Ni Ni Ni T ini
ConcenrmrionofI =i \Mn Mn Mn >l Mn
transition metal L~ Co Co Co / Co
High capacity Medium capacity Low capacity Medium capacity
Low particle strength Medium particle strength High particle strength High particle strength
Low stability Medium stability High stability High stability

[ Investigate an advanced continuous synthesis process

® Advanced CSTR (Continuous Stirred Tank Reactor) system
" TVR (Taylor Vortex Reactor) system

(] Surface coating research on 811 Core-Gradient material to achieve improved cycle life
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Responses to Previous Year Reviewers’ Comments

= “The reviewer remarked outstanding performance meeting the needs of the industry and
research community while adding value to ANL’s thorough licensing strategies.”

— Response: We will try to invent new types of concentrated gradient cathode material and develop its
customized synthesis process which will generate several material and/or process patents to
strengthen ANL’s thorough licensing strategies.

=  “The reviewer said that the list of the collaborators demonstrated the trust this group has
earned, well done. It will be interesting to see the performance of the commercialized
products.”

— Response: The characterization of the synthesized materials will be carried out in collaboration with
several basic research groups for fundamental understanding. The physical and electrochemical
properties of the synthesized 811 Core-Shell and Core-Gradient materials were compared to
commercial NMC811 and NMC333. As such, newly prepared concentrated gradient cathodes will
constantly be compared to an available commercial products with statistical evaluation.

=  “The reviewer commented that proposed future research is well-balanced to meet the
program objectives and said highly qualified, hard-working team.”

— Response: We will develop both new types of concentrated gradient cathode material and their new
synthesis process which has economical feasibility with expertise and effort.

NATIONAL LASORATORY




Collaborations
* Material Characterization: £
— Brookhaven National Lab (Seongmin Bak) 1& %

i
T, g

My oB

e Thermal stability
University of lllinois at Chicago (Jordi Cabana)
e 3D elemental mapping
Technische Universitat Braunschweig (Wolfgang Haselrieder)

e Particle stress evaluation

Synthesis process R&D:

Laminar Co., Ltd — CRADA

e Taylor Vortex Reactor process scale-up

Electrochemical evaluation of scaled materials:

Argonne’s CAMP facility (Andrew Jansen)

Thermal stability evaluation:

622 Core-shell cathode to Brookhaven National Lab

622 Core-gradient cathode to Brookhaven National Lab

v v

Bl ipaT™ Argonne

Universitat
NATIONAL
Institut fiir Partikeltechnik LABORATORY

Braunschweig

B Laminar

UI University of lllinois
at Chicago

BROOKHFAVEN

NATIONAL LABORATORY

Open to working with any group
developing advanced active
materials that will be beneficial
for the ABR program.
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Remaining Challenges and Barriers

= Development and scale-up of concentrated gradient cathode material is challenging
but has great promise to improve the performance of battery materials.

= Continuous synthesis process for concentrated gradient cathode material need to be
developed to lower manufacturing cost.

= Further improvement of concentrated gradient cathode material by surface coating
is necessary to achieve longer cycle life.

Argonne & 22




Proposed Future Research

= 811 Core-Shell and Core-Gradient materials

Kilogram scale-up of 811 Core-Shell and Core-Gradient materials (FY17)
Large format cell evaluation (FY17)

Thermal stability studies (FY17)

Surface coating studies to improve cycle life (FY17)

Particle strength analysis

3D elemental mapping

= Preliminary synthesis of other types of 811 concentrated gradient materials

Investigate various particle structures such as FCG and TSFCG
Material characterization and comparison

= |nvestigate an advanced continuous synthesis process

Develop a customized continuous process for concentrated gradient materials

Any proposed future work is subject to change based on funding levels.
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Summary

= 622 Gradient material characterization
— X-ray absorption spectroscopy
— Thermal stability studies

= 811 Core-Shell and Core-Gradient materials
—  Core (LiNig ggMng 5C0g 950,) and surface (LiNig 33Mng 33C0q 330,) cCOMposition were determined
— Particle structure (Core-Shell and Core-Gradient) was selected
— 20L batch synthesis system was set up
— Preliminary 811 Core-Shell material was synthesized
— Preliminary 811 Core-Gradient material was synthesized
— Cross-sectional mapping (SEM with EDS)
— Electrochemical test and comparison to commercial products

= Develop a customized continuous process
— Taylor Vortex Reactor system is being investigated

Argonne & 24
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